The Hsp90 chaperone system from the African trypanosome, Trypanosoma brucei

Author:

Jamabo MiebakaORCID,Bentley Stephen J.,Macucule-Tinga Paula,Edkins Adrienne L.ORCID,Boshoff AileenORCID

Abstract

AbstractAfrican Trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and is spread by the tsetse fly in sub-Saharan Africa. The disease is fatal if left untreated and the currently approved drugs for treatment are toxic and difficult to administer. The trypanosome must survive in the insect vector and its mammalian host, and to adapt to these different conditions, the parasite relies on molecular chaperones called heat shock proteins. Heat shock proteins mediate the folding of newly synthesized proteins as well as prevent misfolding of proteins under normal conditions and during stressful conditions. Heat shock protein 90 (Hsp90) is one of the major molecular chaperones of the stress response at the cellular level. It functions with other chaperones and co-chaperones and inhibition of its interactions is being explored as a potential therapeutic target for numerous diseases. This study provides an in-silico overview of Hsp90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other kinetoplastid parasites. The evolutionary, functional, and structural analyses of Hsp90 were also shown. The updated information on Hsp90 and its co-chaperones from recently published proteomics on T. brucei was examined for the different life cycle stages and subcellular localisations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding 12 putative Hsp90 genes, 10 of which are cytosolic and located on a single chromosome while T. gambiense encodes 5 Hsp90 genes, 3 of which are located in the cytosol. Eight putative co-chaperones were identified in this study, 6 TPR-containing and 2 non-TPR-containing co-chaperones. This study provides an updated context for studying the biology of the African trypanosome and evaluating Hsp90 and its interactions as potential drug targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3