Multiple classes of bactericidal antibiotics cause DNA double strand breaks in Staphylococcus aureus

Author:

Clarke Rebecca S.ORCID,Ha Kam Pou,Edwards Andrew M.ORCID

Abstract

AbstractAntibiotics inhibit essential bacterial processes, resulting in arrest of growth and in some cases cell death. Many antibiotics are also reported to trigger endogenous production of reactive oxygen species (ROS), which damage DNA and other macromolecules. However, the type of DNA damage that arises and the mechanisms used by bacteria to repair it are largely unclear. We found that several different classes of antibiotic triggered dose-dependent DNA damage in Staphylococcus aureus, including some bacteriostatic drugs. Damage was heterogenous and varied in magnitude between strains. However, antibiotic-triggered DNA damage led to double strand breaks, the processing of which by the RexAB helicase/nuclease complex triggered the SOS response and reduced staphylococcal susceptibility to most of the antibacterials tested. In most cases, DNA DSBs occurred under aerobic but not anaerobic conditions, suggesting a role for ROS. We conclude that DNA double strand breaks are a common occurrence during bacterial exposure to several different antibiotic classes and that repair of this damage by the RexAB complex promotes bacterial survival.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3