Mechanisms involved in the active secretion of CTX-M-15 β-lactamase by pathogenic E. coli ST131

Author:

Rangama SeverineORCID,Lidbury Ian D. E. A,Holden Jennifer M.,Borsetto ChiaraORCID,Murphy Andrew R. J.ORCID,Hawkey Peter M.,Wellington Elizabeth M. H.

Abstract

AbstractInfections caused by antimicrobial resistant bacterial pathogens are fast becoming an important global health issue. Strains of Escherichia coli are common causal agents of urinary tract infection and can carry multiple resistance genes. This includes the gene blaCTX-M-15 that encodes for an extended spectrum beta-lactamase (ESBL). While studying antimicrobial resistance (AMR) in the environment we isolated several strains of E. coli ST131 downstream of a WWTP in a local river. These isolates were surviving in the river sediment and characterisation proved that a multi-resistant phenotype was evident. Here, we show that E. coli strain 48 (river isolate ST131), provided a protective effect against a third-generation cephalosporin (cefotaxime) for a susceptible E. coli strain 33 (river isolate ST3576) through secretion of a functional ESBL into the growth medium. Furthermore, extracellular ESBL activity was stable for at least 24 h after secretion. Proteomic and molecular genetic analyses identified CTX-M-15 as the major secreted ESBL responsible for the observed protective effect. In contrast to previous studies, OMVs were not the sole route for CTX-M-15 secretion. Indeed, mutation of the Type I secretion system led to a significant reduction in the growth of the ESBL-producing strain as well as a significantly reduced ability to confer protective effect. We speculate that CTX-M-15 secretion, mediated through active secretion using molecular machinery provides a public goods service by facilitating the survival of otherwise susceptible bacteria in the presence of cefotaxime.Abstract importanceInfections caused by antimicrobial resistant bacterial pathogens have become an important global health issue. Wastewater treatment plants (WWTPs) have been identified as hotspots for the dissemination of antimicrobial resistant genes/bacteria into the environment. In this study, we investigated resistance enzyme secretion by a multi-drug resistant human pathogenic E. coli, isolated from a UK river, downstream of a WWTP. We present evidence that the resistant strain actively secreted an important resistance enzyme into the surrounding medium which degraded the antibiotic cefotaxime. This research provided evidence for the mechanism for secretion of this enzyme which could indicate a new target to tackle antibiotic resistance pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3