Assigning confidence to structural annotations from mass spectra with COSMIC

Author:

Hoffmann Martin A.,Nothias Louis-Félix,Ludwig MarcusORCID,Fleischauer Markus,Gentry Emily C.,Witting Michael,Dorrestein Pieter C.,Dührkop KaiORCID,Böcker Sebastian

Abstract

AbstractUntargeted metabolomics experiments rely on spectral libraries for structure annotation, but these libraries are vastly incomplete; in silico methods search in structure databases but cannot distinguish between correct and incorrect annotations. As biological interpretation relies on accurate structure annotations, the ability to assign confidence to such annotations is a key outstanding problem. We introduce the COSMIC workflow that combines structure database generation, in silico annotation, and a confidence score consisting of kernel density p-value estimation and a Support Vector Machine with enforced directionality of features. In evaluation, COSMIC annotates a substantial number of hits at small false discovery rates, and outperforms spectral library search for this purpose. To demonstrate that COSMIC can annotate structures never reported before, we annotated twelve novel bile acid conjugates; nine structures were confirmed by manual evaluation and two structures using synthetic standards. Second, we annotated and manually evaluated 315 molecular structures in human samples currently absent from the Human Metabolome Database. Third, we applied COSMIC to 17,400 experimental runs and annotated 1,715 structures with high confidence that were absent from spectral libraries.

Publisher

Cold Spring Harbor Laboratory

Reference85 articles.

1. Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides;Nat Microbiol,2016

2. Feature-based molecular networking in the GNPS analysis environment

3. MetaboLights: a resource evolving in response to the needs of its scientific community;Nucleic Acids Res,2019

4. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools;Nucleic Acids Res,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3