A photoswitchable helical peptide with light-controllable interface / transmembrane topology in lipidic membranes

Author:

Gutiérrez-Salazar Mónica,Santamaría-Aranda EduardoORCID,Schaar Louise,Salgado JesúsORCID,Sampedro DiegoORCID,Lorenz-Fonfria Victor A.ORCID

Abstract

AbstractAccording to the three-step model, the spontaneous insertion and folding of helical transmembrane (TM) polypeptides into lipid bilayers is driven by three sequential equilibria: solution-to-membrane interface (MI) partition, unstructured-to-helical folding, and MI-to-TM helix insertion. However, understanding these three steps with molecular detail has been challenged by the lack of suitable experimental approaches to rapidly and reversibly perturb membrane-bound hydrophobic polypeptides out of equilibrium. Here, we report on a 24-residues-long hydrophobic α-helical polypeptide, covalently coupled to an azobenzene photoswitch (KCALP-azo), which displays a light-controllable TM/MI equilibrium in hydrated lipid bilayers. FTIR spectroscopy shows that dark-adapted KCALP-azo (trans azobenzene) folds as a TM α-helix, with its central TM region displaying an average tilt of 36 ± 4° with the membrane normal (TM topology). After trans-to-cis photoisomerization of the azobenzene moiety with UV light (reversed with blue light), spectral changes by FTIR spectroscopy indicate that the helical structure of KCALP-azo is maintained but the peptide experiences a more polar environment. Interestingly, pH changes induced similar spectral alterations in the helical peptide LAH4, with a well-characterized pH-dependent TM/MI equilibrium. Polarized experiments confirmed that the membrane topology of KCALP-azo is altered by light, with its helix tilt changing reversibly from 32 ± 5° (TM topology, blue light) to 79 ± 8° (MI topology, UV light). Further analysis indicates that, while the trans isomer of KCALP-azo is ~100% TM, the cis isomer exists in a ~90% TM and ~10% MI mixture. Strategies to further increase the perturbation of the TM/MI equilibrium with the light are briefly discussed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3