Dynamic Data-Driven Algorithm to Predict the Cumulative COVID-19 Infected Cases Using Susceptible-Infected-Susceptible Model

Author:

Anand Abhinav,Kumar Saurabh,Ghosh PalashORCID

Abstract

AbstractIn recent times, researchers have used Susceptible-Infected-Susceptible (SIS) model to understand the spread of pandemic COVID-19. The SIS model has two compartments, susceptible and infected. In this model, the interest is to determine the number of infected people at a given time point. However, it is also essential to know the cumulative number of infected people at a given time point, which is not directly available from the SIS model’s present structure. In this work, we propose a modified structure of the SIS model to determine the cumulative number of infected people at a given time point. We develop a dynamic data-driven algorithm to estimate the model parameters based on an optimally chosen training phase to predict the same. We demonstrate the proposed algorithm’s prediction performance using COVID-19 data from Delhi, India’s capital city.

Publisher

Cold Spring Harbor Laboratory

Reference17 articles.

1. Herbert W Hethcote . The mathematics of infectious diseases. SIAM review, 42(4):599–653.

2. W Hamer et al. Epidemiology old and new. Epidemiology Old and New., 1928.

3. Ronald Ross . The prevention of malaria. John Murray, 1911.

4. Covid-19 and the kidney: From epidemiology to clinical practice;Journal of Clinical Medicine,2020

5. Debashree Ray , Maxwell Salvatore , Rupam Bhattacharyya , Lili Wang , Jiacong Du , Shariq Mohammed , Soumik Purkayastha , Aritra Halder , Alexander Rix , Daniel Barker , Michael Kleinsasser , Yiwang Zhou , Debraj Bose , Peter Song , Mousumi Banerjee , Veerabhadran Bal-adandayuthapani , Parikshit Ghosh , and Bhramar Mukherjee . Predictions, role of interventions and effects of a historic national lockdown in india’s response to the the covid-19 pandemic: Data science call to arms. Harvard Data Science Review, 6 2020. https://hdsr.mitpress.mit.edu/pub/r1qq01kw.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3