Abstract
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is comprised of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. We, therefore, develop a minimal model of cells moving through confined geometries that effectively includes all three types of cytoskeletal filaments with a cell consisting of an actomyosin cortex and a deformable cell nucleus and mechanical connections between the two cortices—the outer actomyosin one and the inner nuclear one. By decreasing the amount of vimentin, we find that the cell speed is typically faster for vimentin-null cells as compared to cells with vimentin. Vimentin-null cells also contain more deformed nuclei in confinement. Finally, vimentin affects nucleus positioning within the cell. By positing that as the nucleus position deviates further from the center of mass of the cell, microtubules become more oriented in a particular direction to enhance cell persistence or polarity, we show that vimentin-nulls are more persistent than vimentin-full cells. The enhanced persistence indicates that the vimentin-null cells are more subjugated by the confinement since their internal polarization mechanism that depends on cross-talk of the centrosome with the nucleus and other cytoskeletal connections is diminished. In other words, the vimentin-null cells rely more heavily on external cues. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.
Publisher
Cold Spring Harbor Laboratory