Brain kernel: a new spatial covariance function for fMRI data

Author:

Wu AnqiORCID,Nastase Samuel A.ORCID,Baldassano Christopher A.ORCID,Turk-Browne Nicholas B.ORCID,Norman Kenneth A.,Engelhardt Barbara E.,Pillow Jonathan W.ORCID

Abstract

AbstractA key problem in functional magnetic resonance imaging (fMRI) is to estimate spatial activity patterns from noisy high-dimensional signals. Spatial smoothing provides one approach to regularizing such estimates. However, standard smoothing methods ignore the fact that correlations in neural activity may fall off at different rates in different brain areas, or exhibit discontinuities across anatomical or functional boundaries. Moreover, such methods do not exploit the fact that widely separated brain regions may exhibit strong correlations due to bilateral symmetry or the network organization of brain regions. To capture this non-stationary spatial correlation structure, we introduce the brain kernel, a continuous covariance function for whole-brain activity patterns. We define the brain kernel in terms of a continuous nonlinear mapping from 3D brain coordinates to a latent embedding space, parametrized with a Gaussian process (GP). The brain kernel specifies the prior covariance between voxels as a function of the distance between their locations in embedding space. The GP mapping warps the brain nonlinearly so that highly correlated voxels are close together in latent space, and uncorrelated voxels are far apart. We estimate the brain kernel using resting-state fMRI data, and we develop an exact, scalable inference method based on block coordinate descent to overcome the challenges of high dimensionality (10-100K voxels). Finally, we illustrate the brain kernel’s usefulness with applications to brain decoding and factor analysis with multiple task-based fMRI datasets.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics;Statistical applications in genetics and molecular biology.,2005

2. Bickel PJ , Levina E . Regularized estimation of large covariance matrices. The Annals of Statistics. 2008; p. 199–227.

3. Hsieh CJ , Sustik MA , Dhillon IS , Ravikumar PK , Poldrack R . BIG & QUIC: Sparse inverse covariance estimation for a million variables. In: NIPS; 2013. p. 3165–3173.

4. Treister E , Turek JS . A block-coordinate descent approach for large-scale sparse inverse covariance estimation. In: NIPS; 2014. p. 927–935.

5. Varoquaux G , Gramfort A , Poline JB , Thirion B . Brain covariance selection: better individual functional connectivity models using population prior. In: NIPS; 2010. p. 2334–2342.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3