The presence of SARS-CoV-2 RNA in different freshwater environments in urban settings determined by RT-qPCR: implications for water safety

Author:

Mahlknecht JürgenORCID,Alonso-Padilla Diego,Ramos Edrick,Reyes Luisa Ma.,Álvarez Mario MoisesORCID

Abstract

AbstractThis study is the first focused on the presence of SARS-CoV-2 in different freshwater environments in an urban setting. Groundwater and surface water reservoirs for drinking water as well as water from receiving rivers of the Monterrey Metropolitan Area were sampled repeatedly during a SARS-CoV-2 peak phase between October 2020 and January 2021, and viral RNA was measured by quantitative reverse transcription polymerase chain reaction. Forty-four percent of the groundwater samples had detectable viral loads between 2.6 and 38.3 copies/ml. A significant correlation between viral load and sucralose concentration in groundwater reaffirmed the hypothesis of leaching and infiltrating effluent from surface and/or failing sewage pipes and emphasized the importance of water disinfection. Twelve percent of the surface water dam samples tested positive for viral RNA, with values varying between 3.3 and 3.8 copies/ml. Finally, 13% of the river samples were positive for viral RNA, with concentrations ranging from 2.5 to 7.0 copies/ml. Untreated wastewater samples taken in the same period showed viral loads of up to 3535 copies/ml, demonstrating a dilution effect and/or wastewater facilities efficiency of three orders of magnitude. Variations in the viral loads in the groundwater and surface water over time and at the submetropolitan level generally reflected the reported trends in infection cases for Monterrey. The viral loads in the freshwater environments of Monterrey represent a low risk for recreational activities according to a preliminary risk assessment model. However, this result should not be taken lightly due to uncertainty regarding data and model constraints and the possibility of situations where the infection risk may increase considerably.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3