A new chemoenzymatic semisynthetic approach provides novel insight into the role of phosphorylation beyond exon1 of Huntingtin and reveals N-terminal fragment length-dependent distinct mechanisms of aggregation

Author:

Kolla RajasekharORCID,Gopinath PushparathinamORCID,Ricci Jonathan,Reif Andreas,Rostami ImanORCID,Lashuel Hilal A.ORCID

Abstract

AbstractHuntington’s disease is a neurodegenerative disorder caused by the expansion of a polyglutamine (poly Q) repeat (>36Q) in the N-terminal domain of the huntingtin protein (Htt), which renders the protein or fragments thereof more prone to aggregate and form inclusions. Although several Htt N-terminal fragments of different lengths have been identified within Htt inclusions, most studies on the mechanisms, sequence, and structural determinants of Htt aggregation have focused on the Htt exon1 (Httex1). Herein, we investigated the aggregation properties of mutant N-terminal Htt fragments of various lengths (Htt171, Htt140, and Htt104) in comparison to mutant Httex1. We also present a new chemoenzymatic semisynthetic strategy that enables site-specific phosphorylation of Htt beyond Httex1. These advances yielded novel insights into how PTMs and structured domains beyond Httex1 influence aggregation mechanisms, kinetics, and fibril morphology of longer N-terminal Htt fragments. We demonstrate that phosphorylation at T107 significantly slowed its aggregation, whereases phosphorylation at T107 and S116 accelerated the aggregation of Htt171, underscoring the importance of crosstalk between different PTMs. We demonstrate that mutant Htt171 proteins aggregate via a different mechanism and form oligomers and fibrillar aggregates with morphological properties that are distinct from that of mutant Httex1. These observations suggest that different N-terminal fragments could have distinct mechanisms of aggregation and that a single polyQ-targeting anti-aggregation strategy may not effectively inhibit the aggregation of all N-terminal Htt fragments. Finally, our results underscore the importance of further studies to investigate the aggregation mechanisms of Htt fragments and how the various fragments interact with each other and influence Htt toxicity, pathology formation, and disease progression.Table of content

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3