Abstract
AbstractSuper-resolution structured illumination microscopy (SIM) has become a widely used method for biological imaging. Standard reconstruction algorithms, however, are prone to generate noise-specific artefacts that limit their applicability for lower signal-to-noise data. Here, we present a physically realistic noise model that explains the structured noise artefact and that is used to motivate new complementary reconstruction approaches. True Wiener-filtered SIM optimizes contrast given the available signal-to-noise ratio, flat-noise SIM fully overcomes the structured noise artefact while maintaining resolving power. Both methods eliminate ad-hoc user adjustable reconstruction parameters in favour of physical parameters, enhancing objectivity. The new reconstructions point to a trade-off between contrast and a natural noise appearance. This trade-off can be partly overcome by additional notch filtering, but at the expense of a decrease in signal-to-noise ratio. The benefits of the proposed approaches are demonstrated on focal adhesion and tubulin samples in 2D and 3D, and on nano-fabricated fluorescent test patterns.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Answering some questions about structured illumination microscopy;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-02-14