Author:
Dearing Carley,Morano Rachel,Ptaskiewicz Elaine,Mahbod Parinaz,Scheimann Jessie R,Franco-Villanueva Ana,Wulsin Lawson,Myers Brent
Abstract
AbstractExposure to prolonged stress during adolescence taxes adaptive and homeostatic processes leading to deleterious behavioral and metabolic outcomes. Although previous pre-clinical studies found effects of early life stress on cognition and stress hormone reactivity, these studies largely focused on males. The purpose of the current study was to determine how biological sex shapes behavioral coping and metabolic health across the lifespan after chronic stress. We hypothesized that examining chronic stress-induced behavioral and endocrine outcomes would reveal sex differences in the biological basis of susceptibility. During the late adolescent period, male and female Sprague-Dawley rats experienced chronic variable stress (CVS). Following completion of CVS, all rats experienced a forced swim test (FST) followed 3 days later by a fasted glucose tolerance test (GTT). The FST was used to determine coping in response to a stressor. Endocrine metabolic function was evaluated in the GTT by measuring glucose and corticosterone, the primary rodent glucocorticoid. Animals then aged to 15 months when the FST and GTT were repeated. In young animals, chronically stressed females exhibited more passive coping and corticosterone release in the FST. Additionally, chronically stressed females had elevated corticosterone and impaired glucose clearance in the GTT. Aging affected all measurements as behavioral and endocrine outcomes were sex specific. Furthermore, regression analysis between hormonal and behavioral responses identified associations depending on sex and stress. Collectively, these data indicate female susceptibility to the effects of chronic stress during adolescence. Further, translational investigation of coping style and glucose homeostasis may identify biomarkers for stress-related disorders.
Publisher
Cold Spring Harbor Laboratory