High molecular weight DNA extraction strategies for long-read sequencing of complex metagenomes

Author:

Trigodet FlorianORCID,Lolans KarenORCID,Fogarty Emily,Shaiber Alon,Morrison Hilary G.,Barreiro Luis,Jabri Bana,Eren A. MuratORCID

Abstract

AbstractBy offering extremely long contiguous characterization of individual DNA molecules, rapidly emerging long-read sequencing strategies offer comprehensive insights into the organization of genetic information in genomes and metagenomes. However, successful long-read sequencing experiments demand high concentrations of highly purified DNA of high molecular weight (HMW), which limits the utility of established DNA extraction kits designed for short-read sequencing. Challenges associated with input DNA quality intensify further when working with complex environmental samples of low microbial biomass, which requires new protocols that are tailored to study metagenomes with long-read sequencing. Here, we use human tongue scrapings to benchmark six HMW DNA extraction strategies that are based on commercially available kits, phenol-chloroform (PC) extraction, and agarose encasement followed by agarase digestion. A typical end goal of HMW DNA extractions is to obtain the longest possible reads during sequencing, which is often achieved by PC extractions as demonstrated in sequencing of cultured cells. Yet our analyses that consider overall read-size distribution, assembly performance, and the number of circularized elements found in sequencing results suggest that non-PC methods may be more appropriate for long-read sequencing of metagenomes.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Clades of Huge Phages from across Earth’s Ecosystems;Nature,2020

2. Pulsed Field Gel Electrophoresis: A Technique for Fractionating Large DNA Molecules;Trends in Genetics: TIG,1986

3. Annotated bacterial chromosomes from frame-shift-corrected long-read metagenomic data

4. New Approaches for Metagenome Assembly with Short Reads;Briefings in Bioinformatics,2020

5. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data;Nature Methods,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3