The Mechanism of Neurite Outgrowth Induction by Novel Synthetic Retinobenzoic Acids

Author:

Zhang Yang,Yoshimi Yoji,Funatsu Osamu,Hayashi Ryuto,Komagawa Shinsuke,Saito Shinichi,Nagahara Yukitoshi,Ikekita Masahiko

Abstract

AbstractRetinoids are a family of vitamin A-derived molecules and include the biologically active metabolite, retinoic acid (RA). RA acts as a specific modulator of neuronal differentiation and proliferation. However, teratogenicity and a large excess of RA have been found in animal studies. Thus, development of effective and stable retinoids is desirable. In this study, we showed that treatment with novel synthetic retinobenzoic acids promotes neurite outgrowth in a selected subpopulation of the human neuroblastoma cell line SK-N-SH. Furthermore, we found that, although acting via a different mechanism, retinobenzoic acids have the same neurite outgrowth-inducing effect as RA. Retinoids, including RA, bind to nuclear retinoic acid receptors (RARs). Therefore, we examined the expression of RARs in retinobenzoic acid-treated cells. Similar to already known retinoids, novel synthetic retinobenzoic acids promote the upregulation of RARβ and have no effect on RARα or γ. These results suggest that retinobenzoic acids act via RARβ during neurite outgrowth. Moreover, stimulation with RA or retinobenzoic acids significantly increased the phosphorylation levels of both ERK1/2 and mTOR. ERK1/2 and mTOR inhibition blocked the retinobenzoic acid-induced increase in neurite outgrowth, suggesting that retinobenzoic acids promoted neurite outgrowth by activating the ERK1/2 and mTOR signaling pathways. Notably, the RA-induced increase in neurite outgrowth was blocked by the ERK1/2 inhibitor U0126, but not by the mTOR inhibitor rapamycin. In addition, ERK1/2 inhibition blocked the upregulation of RARβ promoted by RA and retinobenzoic acids. In contrast, mTOR inhibition had no effect on upregulation of RARβ. Our results show that novel synthetic retinobenzoic acids induce neurite outgrowth by a different mechanism than RA. These findings suggest that activation of both ERK1/2, which results in downstream regulation of RARβ, and mTOR, are responsible for the novel synthetic retinobenzoic acid-induced neurite outgrowth in human neuroblastoma cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3