Lung organoids and microplastic fibers: a new exposure model for emerging contaminants

Author:

Winkler AnnaORCID,Santo Nadia,Madaschi Laura,Cherubini Alessandro,Rusconi Francesco,Rosso Lorenzo,Tremolada Paolo,Lazzari Lorenza,Bacchetta Renato

Abstract

AbstractBackgroundThree-dimensional (3D) structured organoids are the most advanced in vitro models for studying human health effects, but they have been applied only once to evaluate the biological effects associated with microplastic exposure. Fibers from synthetic clothes and fabrics are a major source of airborne microplastics, and their release from dryer machines is still poorly understood.ObjectivesIn this study, we aimed to establish an in vitro organoid model of human lung epithelial cells to evaluate its suitability for studying the effects of airborne microplastic contamination on humans. Furthermore, we aimed to characterize the microplastic fibers (MPFs) released in the exhaust filter of a household dryer and to test their interactions and inflammatory effects on the established lung organoids.MethodsThe polyester fibers emitted from the drying of synthetic fabrics were collected. Morphological characterization of the fibers released into the air filter was performed by optical microscopy and scanning electron microscopy (SEM)/energy dispersive x-ray spectroscopy (EDS). The organoids were exposed to various MPF concentrations (1, 10, and 50 mg L−1) and analyzed by optical microscopy, SEM, and confocal microscopy. Gene expression analysis of lung-specific genes, inflammatory cytokines, and oxidative stress-related genes was achieved by quantitative reverse transcription–polymerase chain reaction (qRT-PCR).ResultsWe successfully cultured organoids with lung-specific genes. The presence of MPFs did not inhibit organoid growth, but polarized cell growth was observed along the fibers. Moreover, the MPFs did not cause inflammation or oxidative stress. Interestingly, the MPFs were coated with a cellular layer, resulting in the inclusion of fibers in the organoid.DiscussionThis work could have potential long-term implications regarding lung epithelial cells undergoing repair. This preliminary exposure study using human lung organoids could form the basis for further research regarding the toxicological assessment of emerging contaminants such as micro- or nanoplastics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3