Phodopus roborovskii SH101 as a systemic infection model of SARS-CoV-2

Author:

Zhai Chongkai,Wang Mingda,Chung Hea-Jong,Hassan Md. Mehedi,Lee Seungkoo,Kim Hyeon-Jin,Hong Seong-Tshool

Abstract

AbstractSevere acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide threat with its unusually high transmission rates and rapid evolution into diverse strains. Unlike typical respiratory viruses, SARS-CoV-2 frequently causes systemic infection by breaking the boundaries of the respiratory systems. The development of animal models recapitulating the clinical manifestations of COVID-19 is of utmost importance not only for the development of vaccines and antivirals but also for understanding the pathogenesis. However, there has not been developed an animal model for systemic infection of SARS-CoV-2 representing most aspects of the clinical manifestations of COVID-19 with systemic symptoms. Here we report that a hamster strain of Phodopus roborovskii SH101, a laboratory inbred hamster strain of P. roborovskii, displayed most symptoms of systemic infection upon SARS-CoV-2 infection as in the case of the human counterpart, unlike current COVID-19 animal models. P. roborovskii SH101 post-infection of SARS-CoV-2 represented most clinical symptoms of COVID-19 such as snuffling, dyspnea, cough, labored breathing, hunched posture, progressive weight loss, and ruffled fur, in addition to high fever following shaking chills. Histological examinations also revealed a serious right-predominated pneumonia as well as slight organ damages in the brain and liver, manifesting systemic COVID-19 cases. Considering the merit of a small animal as well as its clinical manifestations of SARS-CoV-2 infection in human, this hamster model seems to provide an ideal tool to investigate COVID-19.Author summaryAlthough the current animal models supported SARS-CoV-2 replication and displayed varying degrees of illness after SARS-CoV-2 infection, the infections of SARS-CoV-2 were mainly limited to the respiratory systems of these animals, including hACE2 transgenic mice, hamsters, ferrets, fruit bats, guinea pigs, African green monkey, Rhesus macaques, and Cynomolgus macaques. While these animal models can be a modest model for the respiratory infection, there is a clear limit for use them in the study of COVID-19 that also displays multiple systemic symptoms. Therefore, the development of an animal model recapitulating COVID-19-specific symptoms such as the right-predominated pneumonia would be the utmost need to overcome the imminent threat posed by COVID-19. We identified a very interesting hamster strain, Phodopus roborovskii SH101, which mimics almost all aspects of the clinical manifestations of COVID-19 upon SARS-CoV-2 infection. Unlike the current animal models, SARS-CoV-2-infected P. roborovskii SH101 not only displayed the symptoms of respiratory infection but also clinical manifestations specific to human COVID-19 such as high fever following shaking chills, serious right-predominated pneumonia, and minor organ damages in the brain and liver.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Epidemiology, risk, myths, pharmacotherapeutic management and socio economic burden due to novel COVID-19: A recent update;Research Journal of Pharmacy and Technology,2020

2. Clinical characteristics of COVID-19 in children: A systematic review;Pediatric pulmonology,2020

3. SARS-CoV-2 viral load is associated with increased disease severity and mortality;Nature communications,2020

4. Neurological associations of COVID-19

5. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3