Parasitic nematode fatty acid- and retinol-binding proteins compromise host immunity by interfering with host lipid signaling pathways

Author:

Parks Sophia C.,Nguyen Chau,Nasrolahi Shyon,Juncaj Damian,Lu Dihong,Ramaswamy Raghavendran,Dhillon Harpal,Buchman Anna,Akbari Omar S.ORCID,Yamanaka Naoki,Boulanger Martin J.,Dillman Adler R.ORCID

Abstract

AbstractParasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we provide the first in vivo study that shows FARs modulate animal immunity, causing an increase in susceptibility to bacterial infection. Next we determined that FARs dampen various aspects of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Finally, we found that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for a functional immune response. Collectively, these data reveal a complex role for FARs in immunosuppression and provide detailed mechanistic insight into parasitism in phylum Nematoda.SignificanceA central aspect of parasitic nematode success is their ability to modify host biology, including evasion and/or subversion of host immunity. Modulation of host biology and the pathology caused by parasitic nematodes is largely effected through the release of proteins and small molecules. There are hundreds of proteins released by nematodes during an infection and few have been studied in detail. Fatty acid- and retinol-binding proteins (FARs) are a unique protein family released during infection. We report that nematode FARs from S. carpocapsae, C. elegans and A. ceylanicum dampen fly immunity decreasing resistance to infection. Mechanistically, this is achieved through modulation of the phenoloxidase cascade and antimicrobial peptide production. Furthermore, FARs alter the availability of lipid immune signaling precursors in vivo and show binding specificity in vitro.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3