Localization of muscarinic acetylcholine receptor dependent rhythm generating modules in theDrosophilalarval locomotor network

Author:

Jonaitis JuliusORCID,MacLeod James,Pulver Stefan R.ORCID

Abstract

AbstractMechanisms of rhythm generation have been extensively studied in motor systems that control locomotion over terrain in limbed animals; however, much less is known about rhythm generation in soft-bodied terrestrial animals. Here we explored how muscarinic acetylcholine receptor (mAChR) dependent rhythm generating networks are distributed in the central nervous system (CNS) of soft-bodiedDrosophilalarvae. We measured fictive motor patterns in isolated CNS preparations using a combination of Ca2+imaging and electrophysiology while manipulating mAChR signalling pharmacologically. Bath application of the mAChR agonist oxotremorine potentiated rhythm generation in distal regions of the isolated CNS, whereas application of the mAChR antagonist scopolamine suppressed rhythm generation in these regions. Oxotremorine raised baseline Ca2+levels and potentiated rhythmic activity in isolated posterior abdominal CNS segments as well as isolated anterior brain and thoracic regions, but did not induce rhythmic activity in isolated anterior abdominal segments. Bath application of scopolamine to reduced preparations lowered baseline Ca2+levels and abolished rhythmic activity. These results suggest the presence of a bimodal gradient of rhythmogenicity in the larval CNS, with mAChR dependent rhythm generating networks in distal regions separated by medial segments with severely reduced rhythmogenic abilities. This work furthers our understanding of motor control in soft-bodied locomotion and provides a foundation for study of rhythm generating networks in an emerging genetically tractable locomotor system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3