Integrative genome-scale metabolic modeling reveals versatile metabolic strategies for methane utilization in Methylomicrobium album BG8

Author:

Villada Juan C.ORCID,Duran Maria F.ORCID,Kent Lim Chee,Stein Lisa Y.ORCID,Lee Patrick K. H.ORCID

Abstract

Methylomicrobium album BG8 is an aerobic methanotrophic bacterium that can mitigate environmental methane emission, and is a promising microbial cell factory for the conversion of methane to value-added chemicals. However, the lack of a genome-scale metabolic model (GEM) of M. album BG8 has hindered the development of systems biology and metabolic engineering of this methanotroph. To fill this gap, a high-quality GEM was constructed to facilitate a system-level understanding on the biochemistry of M. album BG8. Next, experimental time-series growth and exometabolomics data were integrated into the model to generate context-specific GEMs. Flux balance analysis (FBA) constrained with experimental data derived from varying levels of methane, oxygen, and biomass were used to model the metabolism of M. album BG8 and investigate the metabolic states that promote the production of biomass and the excretion of carbon dioxide, formate, and acetate. The experimental and modeling results indicated that the system-level metabolic functions of M. album BG8 require a ratio > 1:1 between the oxygen and methane specific uptake rates for optimal growth. Integrative modeling revealed that at a high ratio of oxygen-to-methane uptake flux, carbon dioxide and formate were the preferred excreted compounds; at lower ratios, however, acetate accounted for a larger fraction of the total excreted flux. The results of this study reveal a trade-off between biomass production and organic compound excretion and provide evidence that this trade-off is linked to the ratio between the oxygen and methane specific uptake rates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3