Machine-Learning Powered Optoacoustic Sensor for Diabetes Progression

Author:

Mohajerani Pouyan,Aguirre Juan,Omar Murad,He Hailong,Karlas Angelos,Fasoula Nikolina-Alexia,Lutz Jessica,Kallmayer Michael,Eckstein Hans-Henning,Ziegler Anette-Gabriele,Füchtenbusch Martin,Ntziachristos Vasilis

Abstract

AbstractThe assessment of diabetes severity relies primarily on a count of clinical complications to empirically characterize disease. Disease staging based on clinical complications also employs a scoring system that may not be optimally suited for analysis of earlier stages of diabetes development or for monitoring smaller increments of disease progress with high precision. We propose a novel sensor, which goes beyond the abilities of current state-of-the-art approaches and introduces a new concept in the assessment of biomedical markers by means of ultra-broadband optoacoustic detection. Being insensitive to photon scattering, the new sensor can resolve optical biomarkers in fine detail and as a function of depth and relates epidermal and dermal morphological and micro-vascular density features to diabetes state. We demonstrate basic sensor characteristics in phantoms and examine the novel sensing concept presented in a pilot study using data from 86 participants (20 healthy and 66 diabetic) at an ultra-wide optoacoustic bandwidth of 120 MHz. Machine learning based on ensemble trees was developed and trained in a supervised fashion and subsequently used to examine the relation of sensor data to disease severity, in particular as it associates to diabetes without complications vs. diabetic neuropathy or atherosclerotic cardiovascular disease. We also investigated the sensor performance in relation to HbA1C values. The proposed method achieved statistically significant detection in all different patient groups. The effect of technical parameters, in particular sensor area size and the time window of optoacoustic signals used in data training were also examined in measurements from phantoms and humans. We discuss how optoacoustic sensors fundamentally solve limitations present in optical sensing and, empowered by machine learning, open a new chapter in non-invasive portable sensing for biomedical applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3