3D genomic capture of regulatory immuno-genetic profiles in COVID-19 patients for prognosis of severe COVID disease outcome

Author:

Hunter Ewan,Koutsothanasi Christina,Wilson Adam,Santos Francisco C.,Salter Matthew,Powell Ryan,Dring Ann,Brajer Paulina,Egan Benedict,Westra Jurjen W.,Ramadass Aroul,Messer William,Brunton Amanda,Lyski Zoe,Vancheeswaran Rama,Barlow Andrew,Pchejetski Dmitri,Robbins Peter A.,Mellor Jane,Akoulitchev Alexandre

Abstract

AbstractHuman infection with the SARS-CoV-2 virus leads to coronavirus disease (COVID-19). A striking characteristic of COVID-19 infection in humans is the highly variable host response and the diverse clinical outcomes, ranging from clinically asymptomatic to severe immune reactions leading to hospitalization and death. Here we used a 3D genomic approach to analyse blood samples at the time of COVID diagnosis, from a global cohort of 80 COVID-19 patients, with different degrees of clinical disease outcomes. Using 3D whole genome EpiSwitch® arrays to generate over 1 million data points per patient, we identified a distinct and measurable set of differences in genomic organization at immune-related loci that demonstrated prognostic power at baseline to stratify patients with mild forms of illness and those with severe forms that required hospitalization and intensive care unit (ICU) support. Further analysis revealed both well established and new COVID-related dysregulated pathways and loci, including innate and adaptive immunity; ACE2; olfactory, Gβψ, Ca2+ and nitric oxide (NO) signalling; prostaglandin E2 (PGE2), the acute inflammatory cytokine CCL3, and the T-cell derived chemotactic cytokine CCL5. We identified potential therapeutic agents for mitigation of severe disease outcome, with several already being tested independently, including mTOR inhibitors (rapamycin and tacrolimus) and general immunosuppressants (dexamethasone and hydrocortisone). Machine learning algorithms based on established EpiSwitch® methodology further identified a subset of 3D genomic changes that could be used as prognostic molecular biomarker leads for the development of a COVID-19 disease severity test.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3