Seqpac: A New Framework for small RNA analysis in R using Sequence-Based Counts

Author:

Skog Signe,Örkenby Lovisa,Kugelberg Unn,Tariq Kanwal,Farrants Ann-Kristin ÖstlundORCID,Öst AnitaORCID,Nätt DanielORCID

Abstract

ABSTRACTSmall RNA sequencing (sRNA-seq) has become important for studying regulatory mechanisms in many cellular processes. Data analysis remains challenging, mainly because each class of sRNA—such as miRNA, piRNA, tRNA- and rRNA-derived fragments (tRFs/rRFs)—needs special considerations. Analysis therefore involves complex workflows across multiple programming languages, which can produce research bottlenecks and transparency issues. To make analysis of sRNA more accessible and transparent we present seqpac: a tool for advanced group-based analysis of sRNA completely integrated in R. This opens advanced sRNA analysis for Windows users—from adaptor trimming to visualization. Seqpac provides a framework of functions for analyzing a PAC object, which contains 3 standardized tables: sample phenotypic information (P), sequence annotations (A), and a counts table with unique sequences across the experiment (C). By applying a sequence-based counting strategy that maintains the integrity of the fastq sequence, seqpac increases flexibility and transparency compared to other workflows. It also contains an innovative targeting system allowing sequence counts to be summarized and visualized across sample groups and sequence classifications. Reanalyzing published data, we show that seqpac’s fastq trimming performs equal to standard software outside R and demonstrate how sequence-based counting detects previously unreported bias. Applying seqpac to new experimental data, we discovered a novel rRF that was down-regulated by RNA pol I inhibition (anticancer treatment), and up-regulated in previously published data from tumor positive patients. Seqpac is available on github (https://github.com/Danis102/seqpac), runs on multiple platforms (Windows/Linux/Mac), and is provided with a step-by-step vignette on how to analyze sRNA-seq data.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3