Systematic analysis of CD39, CD103, CD137 and PD-1 as biomarkers for naturally occurring tumor antigen-specific TILs

Author:

Eiva Monika A.ORCID,Omran Dalia K.,Chacon Jessica,Powell Daniel J.

Abstract

AbstractThe detection of tumor-specific T cells in solid tumors is integral to the interrogation of endogenous antitumor responses and to the advancement of downstream therapeutic applications, such as checkpoint immunotherapy and adoptive cell transfer. A number of biomarkers are reported to identify endogenous tumor-specific tumor infiltrating lymphocytes (TILs), namely CD137, PD-1, CD103, and CD39, however a direct comparison of these molecules has yet to be performed. Here, we evaluate these biomarkers in primary human high-grade serous ovarian tumor samples using single-cell mass cytometry to characterize and compare their relative phenotypic profiles, as well as their response to autologous tumor cells ex vivo. CD137+, PD-1+, CD103+, and CD39+ TILs are all detectable in tumor samples with CD137+ TILs being the least abundant. PD-1+, CD103+, and CD39+ TILs all express a subset of CD137+ cells, while CD137+ TILs highly co-express the aforementioned markers. CD137+ TILs exhibit the highest expression of cytotoxic effector molecules, such as IFNγ and Granzyme B, compared to PD-1+, CD103+ or CD39+ TILs. Removal of CD137+ TILs from PD-1+, CD103+, or CD39+ TILs results in lower secretion of IFNγ in response to autologous tumor stimulation, while CD137+ TILs highly secrete IFNγ in an HLA-dependent manner. CD137+ TILs exhibited an exhausted phenotype with CD28 co-expression, suggestive of antigen recognition and receptiveness to reinvigoration via immune checkpoint blockade. Together, our findings demonstrate that the antitumor abilities of PD-1+, CD103+, and CD39+ TILs are mainly derived from a subset of TILs expressing CD137, implicating CD137 is a more selective biomarker for naturally occurring tumor-specific TILs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3