Memory specific to temporal features of sound is formed by cue-selective enhancements in temporal coding enabled by inhibition of an epigenetic regulator

Author:

Rotondo Elena K.,Bieszczad Kasia M.ORCID

Abstract

ABSTRACTRecent investigation of memory-related functions in the auditory system have capitalized on the use of memory-modulating molecules to probe the relationship between memory and its substrates in auditory system coding. For example, epigenetic mechanisms, which regulate gene expression necessary for memory consolidation, are powerful modulators of learning-induced neuroplasticity and long-term memory formation (LTM). Inhibition of the epigenetic regulator histone deacetylase 3 (HDAC3) promotes LTM that is highly specific for spectral features of sound. The present work demonstrates for the first time that HDAC3 inhibition also enables memory for temporal features of sound. Rats trained in an amplitude modulation (AM) rate discrimination task and treated with a selective inhibitor of HDAC3 formed memory that was unusually specific to the AM rate paired with reward. Unusually sound-specific memory revealed behaviorally was associated with a signal-specific enhancement in temporal coding in the auditory system: stronger phase-locking that was specific to the rewarded AM rate was revealed in both the surface-recorded frequency following response (FFR) and auditory cortical multiunit activity in rats treated with the HDAC3-inhibitor. Furthermore, HDAC3inhibition increased trial-to-trial cortical response consistency (relative to naïve and trained vehicle-treated rats) that generalized across different AM rates. Stronger signal-specific phase-locking correlated with individual behavioral differences in memory specificity for the AM signal. Together, these findings support that epigenetic mechanisms regulate activity-dependent processes that enhance discriminability of sensory cues encoded into LTM in both spectral and temporal domains, which may be important for remembering spectrotemporal features of sounds, e.g., as in human voices and speech.SIGNIFICANCE STATEMENTEpigenetic mechanisms have recently been implicated in memory and information processing. Here, we use a pharmacological inhibitor of histone deacetylase 3 (HDAC3) in a sensory model of learning to reveal, for the first time, its ability to enable unusually precise memory for amplitude modulated sound cues. In so doing, we uncover neural substrates for memory’s “specificity” for temporal sound cues. Memory specificity was supported by auditory cortical changes in temporal coding, including greater response consistency and stronger phase-locking. HDAC3 appears to regulate effects across domains that determine specific cue saliency for behavior. Thus, epigenetic players may gate how sensory information is stored in long-term memory and can be leveraged to reveal the neural substrates of sensory details stored in memory.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3