Epidemiological dynamics of viral infection in a marine picoeukaryote

Author:

Listmann LuisaORCID,Heath Sarah,Vale Pedro F.,Schaum C. Elisa,Collins Sinead

Abstract

AbstractOstreococcus tauri is a ubiquitous marine pico-eukaryote that is susceptible to lysis upon infection by its species specific Ostreococcus tauri viruses (OtVs). In natural populations of O. tauri, costs of resistance are usually invoked to explain the persistence or reappearance of susceptible individuals in resistant populations. Given the low costs of resistance measured in laboratory experiments with the O. tauri/OtV system to date, the question remains of why susceptible individuals persist in the wild at all. Epidemiological models of host and pathogen population dynamics are one useful approach to understand the conditions that can allow the coexistence of susceptible and resistant hosts. We used a SIR (Susceptible-Infected-Resistant) model to investigate epidemiological dynamics under different laboratory culturing regimes that are commonly used in the O.tauri/OtV system. When taking into account serial transfer (i.e. batchcycle lengths) and dilution rates as well as different resistance costs, our model predicts that no susceptible cells should be detected under any of the simulated conditions – this is consistent with laboratory findings. We thus considered an alternative model that is not used in laboratory experiments, but which incorporates one key process in natural populations: host populations are periodically re-seeded with new infective viruses. In this model, susceptible individuals re-occurred in the population, despite low costs of resistance. This suggests that periodic attack by new viruses, rather than (or in addition to) costs of resistance, may explain the high proportion of susceptible hosts in natural populations, and underlie the discrepancy between laboratory studies and observations of fresh isolates.ImportanceIn natural samples of Ostreococcus sp. and its associated viruses, susceptible hosts are common. However, in laboratory experiments, fully resistant host populations readily and irreversibly evolve. Laboratory experiments are powerful methods for studying process because they offer a stripped-down simplification of a complex system, but this simplification may be an oversimplification for some questions. For example, laboratory and field systems of marine microbes and their viruses differ in population sizes and dynamics, mixing or migration rates, and species diversity, all of which can dramatically alter process outcomes. We demonstrate the utility of using epidemiological models to explore experimental design and to understand mechanisms underlying host-virus population dynamics. We highlight that such models can be used to form strong, testable hypotheses about which key elements of natural systems need to be included in laboratory systems to make them simplified, rather than oversimplified, versions of the processes we use them to study.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Agrawal, Aneil , and Curtis M Lively . 2002. “Infection Genetics: Gene-for-Gene versus Matching-Alleles Models and All Points in Between.”

2. Virus-Host Swinging Party in the Oceans;Mobile Genetic Elements,2012

3. Genomic island variability facilitates Prochlorococcus–virus coexistence

4. Phytoplankton adaptation in ecosystem models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3