Genomic prediction in an outcrossing and autotetraploid fruit crop: lessons from blueberry breeding

Author:

Ferrão Luís Felipe V.,Amadeu Rodrigo R.,Benevenuto Juliana,de Bem Oliveira Ivone,Munoz Patricio R.ORCID

Abstract

AbstractBlueberry (Vaccinium corymbosumand hybrids) is a specialty crop, with expanding production and consumption worldwide. The blueberry breeding program at the University of Florida (UF) has greatly contributed to the expansion of production areas by developing low-chilling cultivars better adapted to subtropical and Mediterranean climates of the globe. The breeding program has historically focused on phenotypic recurrent selection. As an autopolyploid, outcrossing, perennial, long juvenile phase crop, blueberry’s breeding cycles are costly and time-consuming, which results in low genetic gains per unit of time. Motivated by the application of molecular markers for a more accurate selection in early stages of breeding, we performed pioneering genomic prediction studies and optimization for implementation in the blueberry breeding program. We have also addressed some complexities of sequence-based geno- typing and model parametrization for an autopolyploid crop, providing empirical contributions that can be extended to other polyploid species. We herein revisited some of our previous genomic prediction studies and described the current achievements in the crop. In this paper, our contribution for genomic prediction in an autotetraploid crop is three-fold: i) summarize previous results on the relevance of model parametrizations, such as diploid or polyploid methods, and inclusion of dominance effects; ii) assess the importance of sequence depth of coverage and genotype dosage calling steps; iii) demonstrate the real impact of genomic selection on leveraging breeding decisions by using an independent validation set. Altogether, we propose a strategy for the use of genomic selection in blueberry, with potential to be applied to other polyploid species of a similar background.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3