Abstract
AbstractQuantification of mature-RNA isoform abundance from RNA-seq data has been extensively studied, but much less attention has been devoted to quantifying the abundance of distinct precursor RNAs based on nascent RNA sequencing data. Here we address this problem with a new computational method called Deconvolution of Expression for Nascent RNA sequencing data (DENR). DENR models the nascent RNA read counts at each locus as a mixture of user-provided isoforms. The performance of the baseline algorithm is enhanced by the use of machine-learning predictions of transcription start sites (TSSs) and an adjustment for the typical “shape profile” of read counts along a transcription unit. We show using simulated data that DENR clearly outperforms simple read-count-based methods for estimating the abundances of both whole genes and isoforms. By applying DENR to previously published PRO-seq data from K562 and CD4+ T cells, we find that transcription of multiple isoforms per gene is widespread, and the dominant isoform frequently makes use of an internal TSS. We also identify > 200 genes whose dominant isoforms make use of different TSSs in these two cell types. Finally, we apply DENR and StringTie to newly generated PRO-seq and RNA-seq data, respectively, for human CD4+ T cells and CD14+ monocytes, and show that entropy at the pre-RNA level makes a disproportionate contribution to overall isoform diversity, especially across cell types. Altogether, DENR is the first computational tool to enable abundance quantification of pre-RNA isoforms based on nascent RNA sequencing data, and it reveals high levels of pre-RNA isoform diversity in human cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献