Immunoinformatic approach to design a vaccine against SARS-COV-2 membrane glycoprotein

Author:

Ravindran Radhika,Gunasekaran Shoba,Easwaran Murugesh,Lulu Sajitha,Unni P. Ambili,Vino S.,Doble Mukesh

Abstract

ABSTRACTSARS-COV-2 is a pandemic virus causing COVID-19 disease which affects lungs and upper respiratory tract leading to progressive increase in the death rate worldwide. Currently, there are more than 123 million cases and over 2.71 million confirmed death caused by this virus. In this study, by utilizing an immunoinformatic approach, multiepitope-based vaccine is designed from the membrane protein which plays a vital role in the virion assembly of the novel-CoV. A total of 19 MHC class- I binders with HLA-A and HLA-B alleles have been selected with NetMHC pan EL 4.0 method from IEDB MHC-I prediction server. Four epitopes candidates from M-protein were selected based on the antigenicity, stability, immunogenicity, Ramachandran plot and scores with 100 % was taken for docking analysis with alleles HLA-A (PDB ID: 1B0R) and HLA-B (PDB ID: 3C9N) using ClusPro server. Among the four epitopes, the epitope FVLAAVYRI has the least binding energy and forms electrostatic, hydrogen and hydrophobic interactions with HLA-A (−932.8 Kcal/mol) and HLA-B (−860.7 Kcal/mol) which induce the T-cell response. Each HLA-A and HLA-B complex in the system environment achieves stable backbone configuration between 45-100 ns of MD simulation. This study reports a potent antigenic and immunogenic profile of FVLAAVYRI epitope from M-protein and further in vitro and in vivo validation is needed for its adaptive use as vaccine against COVID-19.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection;Scientific reports,2017

2. EpiDOCK: a molecular docking-based tool for MHC class II binding prediction

3. Baker S (2008) Coronaviruses: molecular biology. Encyclopedia of Virology:554

4. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists;Expert review of vaccines,2010

5. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach;Scientific reports,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3