CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus

Author:

Quinn Charlotte,Anthousi Amalia,Wondji CharlesORCID,Nolan TonyORCID

Abstract

ABSTRACTThe ability to introduce mutations, or transgenes, of choice to precise genomic locations has revolutionised our ability to understand how genes and organisms work.In many mosquito species that are vectors of various human disease, the advent of CRISPR genome editing tools has shed light on basic aspects of their biology that are relevant to their efficiency as disease vectors. This allows a better understanding of how current control tools work and opens up the possibility of novel genetic control approaches, such as gene drives, that deliberately introduce genetic traits into populations. Yet for the Anopheles funestus mosquito, a significant vector of malaria in sub-Saharan Africa and indeed the dominant vector species in many countries, transgenesis has yet to be achieved.We describe herein an optimised transformation system based on the germline delivery of CRISPR components that allows efficient cleavage of a previously validated genomic site and preferential repair of these cut sites via homology-directed repair (HDR), which allows introduction of exogenous template sequence, rather than end-joining repair. The rates of transformation achieved are sufficiently high that it should be able to introduce alleles of choice to a target locus, and recover these, without the need to include additional dominant marker genes. Moreover, the high rates of HDR observed suggest that gene drives, which employ an HDR-type mechanism to ensure their proliferation in the genome, may be well suited to work in An. funestus.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. Akbari, Omar S. , Philippos A. Papathanos , Jeremy E. Sandler , Katie Kennedy , and Bruce A. Hay . 2014. ‘Identification of germline transcriptional regulatory elements in Aedes aegypti’, Scientific Reports, 4.

2. Stable, Germ-Line Transformation ofCulex quinquefasciatus(Diptera: Culicidae)

3. Opinion: Standardizing the definition of gene drive

4. Benedict, M. Q. 2007. ‘Microinjection Methods for Anopheles Embryos.’ in, Methods in Anopheles Research (Malaria Research and Reference Reagent Centre MR4).

5. Site-specific genetic engineering of the Anopheles gambiae Y chromosome

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3