Amotosalen is a bacterial multidrug efflux pump substrate potentially affecting its pathogen inactivation activity

Author:

Green Alex B.,Zulauf Katelyn E.,Truelson Katherine A.,Chiaraviglio Lucius,Cui Meng,Zhang Zhemin,Ware Matthew P.,Flegel Willy A.,Haspel Richard L.,Yu EdORCID,Kirby James EORCID

Abstract

AbstractPathogen inactivation is a strategy to improve the safety of transfusion products. The Cerus Intercept technology makes use of a psoralen compound called amotosalen in combination with UVA light to inactivate bacteria, viruses and protozoa. Psoralens have structural similarity to bacterial multidrug-efflux pump substrates. As these efflux pumps are often overexpressed in multidrug-resistant pathogens and with recent reported outbreaks of transfusion-associated sepsis with Acinetobacter, we tested whether contemporary drug-resistant pathogens might show resistance to amotosalen and other psoralens based on multidrug efflux mechanisms through microbiological, biophysical and molecular modeling analysis. The main efflux systems in Enterobacterales and Acinetobacter baumannii, tripartite RND (resistance-nodulation-cell division) systems which span the inner and outer membranes of Gram-negative pathogens and expel antibiotics from the bacterial cytoplasm into the extracellular space, were specifically examined. We found that amotosalen was an efflux substrate for the TolC-dependent RND efflux pumps in E. coli and the AdeABC efflux pump from Acinetobacter baumannii, and that minimal inhibitory concentrations for contemporary bacterial isolates in vitro approached and exceeded the concentration of amotosalen used in the approved platelet and plasma inactivation procedures. These findings suggest that otherwise safe and effective inactivation methods should be further studied to exclude possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens.ImportancePathogen inactivation is a strategy to enhance the safety of transfused blood products. We identify the compound, amotosalen, widely used for pathogen inactivation, as a bacterial multidrug efflux substrate. Specifically, experiments suggest that amotosalen is pumped out of bacteria by the major TolC-dependent RND efflux pumps in E. coli and the AdeABC efflux pump in Acinetobacter baumannii. Such efflux pumps are often overexpressed in multidrug-resistant pathogens. Importantly, the minimal inhibitory concentrations for contemporary multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Burkholderia spp., and Stenotrophomonas maltophilia isolates approached or exceeded the amotosalen concentration used in approved platelet and plasma inactivation procedures, potentially as a result of efflux pump activity. Although there are important differences in methodology between our experiments and blood product pathogen inactivation, these findings suggest that otherwise safe and effective inactivation methods should be further studied to exclude possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3