Abstract
AbstractA major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has not been possible. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to describe the protein composition of the latent and activated HIV-1 5’LTR. Catchet-MS identified known and novel latent 5’LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs that, by targeting IKZF1 for degradation, reverse HIV-1 latency in CD4+T-cells isolated from virally suppressed people living with HIV-1.One Sentence SummarydCas9 targeted chromatin and histone enrichment for mass spectrometry (Catchet-MS) led to the identification of IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献