Genetic targeting of Card19 is linked to disrupted Ninj1 expression, impaired cell lysis, and increased susceptibility to Yersinia infection

Author:

Bjanes Elisabet,Sillas Reyna Garcia,Matsuda Rina,Demarco Benjamin,Fettrelet Timothée,DeLaney Alexandra A.,Kornfeld Opher S.,Lee Bettina L.,Rodriguez Lopez Eric M.,Grubaugh Daniel,Wynosky-Dolfi Meghan A.,Philip Naomi H.,Krespan Elise,Tovar Dorothy,Joannas Leonel,Beiting Daniel P.,Henao-Mejia Jorge,Schaefer Brian C.,Chen Kaiwen W.ORCID,Broz Petr,Brodsky Igor E.ORCID

Abstract

AbstractCell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as two independently-generated CRISPR/Cas9 Card19 knockout mice showed no defect in macrophage cell lysis, and expression of CARD19 in Card19lxcn macrophages did not restore cell lysis. Card19 is located on chromosome 13, adjacent to Ninj1, which was recently reported to regulate cell lysis downstream of GSDMD activation. Intriguingly, RNA-seq and western blotting revealed that Card19lxcn BMDMs are hypomorphic for NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored cell lysis. Card19lxcn mice exhibited significantly increased susceptibility to Yersinia infection, demonstrating that cell lysis itself plays a key role in protection against bacterial infection. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent Ninj1 gene, thereby disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.Author SummaryProgrammed cell death is critical for regulating tissue homeostasis and host defense against infection. Pyroptosis is an inflammatory form of programmed cell death that couples cell lysis with release of inflammatory cytokines. Cell lysis is triggered by activation of particular intracellular pore forming proteins, but how regulation of cell lysis occurs is not well understood. Genetic targeting of Card19 on chromosome 13 resulted in decreased expression of the adjacent gene, Ninj1 which was recently found to regulate terminal lysis events in response to cell death-inducing stimuli. We found that macrophages from Card19-deficient mice were resistant to multiple forms of cell death in response to a variety of inflammatory stimuli, including canonical and non-canonical inflammasome activation, as well as triggers of cell-extrinsic apoptosis. Notably, Card19-deficient mice were more susceptible to Yersinia infection, indicating that cell lysis contributes to control of bacterial infections. Our data provide new insight into the impact of terminal cell lysis on control of bacterial infection and highlight the role of additional factors that regulate lytic cell death downstream of gasdermin cleavage.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3