Abstract
AbstractUnderstanding long-term trends in marine ecosystems requires accurate and repeatable counts of fishes and other aquatic organisms on spatial and temporal scales that are difficult or impossible to achieve with diver-based surveys. Long-term, spatially distributed cameras, like those used in terrestrial camera trapping, have not been successfully applied in marine systems due to limitations of the aquatic environment.Here, we develop methodology for a system of low-cost, long-term camera traps (Dispersed Environment Aquatic Cameras), deployable over large spatial scales in remote marine environments. We use machine learning to classify the large volume of images collected by the cameras. We present a case study of these combined techniques’ use by addressing fish movement and feeding behavior related to grazing halos, a well-documented benthic pattern in shallow tropical reefscapes.Cameras proved able to function continuously underwater at deployed depths (up to 7 m, with later versions deployed to 40 m) with no maintenance or monitoring for over five months, and collected time-lapse images during daylight hours for a total of over 100,000 images. Our ResNet-50-based deep learning model achieved 92.5% overall accuracy in sorting images with and without fish, and diver surveys revealed that the camera images accurately represented local fish communities.The cameras and machine learning classification represent the first successful method for broad-scale underwater camera trap deployment, and our case study demonstrates the cameras’ potential for addressing questions of marine animal behavior, distributions, and large-scale spatial patterns.
Publisher
Cold Spring Harbor Laboratory
Reference38 articles.
1. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight
2. Bilodeau, S. M. 2019. Ecological Process in Pattern Generation in Tropical Coral-Seagrass Reefscapes. M.S., Wake Forest University, United States -- North Carolina.
3. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioral preference?;Bulletin of Marine Science,1989
4. A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage;Ecological Informatics,2014
5. BichiCAM, an Underwater Automated Video Tracking System for the Study of Migratory Dynamics of Benthic Diadromous Species in Streams;River Research and Applications,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献