Flow cytometry allows rapid detection of protein aggregates in cell culture and zebrafish models of spinocerebellar ataxia-3

Author:

Robinson Katherine J,Tym Madelaine C.,Hogan Alison,Watchon Maxinne,Yuan Kristy C,Plenderleith Stuart K,Don Emily K,Laird Angela S

Abstract

AbstractSpinocerebellar ataxia-3 (SCA3, also known as Machado Joseph Disease), is a neurodegenerative disease caused by inheritance of a ATXN3 gene containing a CAG repeat expansion, resulting in presence of a polyglutamine (polyQ) repeat expansion within the encoded human ataxin-3 protein. SCA3 is characterized by the formation of ataxin-3 protein aggregates within neurons, neurodegeneration, and impaired movement. In this study we have identified protein aggregates in both neuronal-like (SHSY5Y) cells and in vivo (transgenic zebrafish) models expressing human ataxin-3 protein containing polyQ expansion. We have adapted a flow cytometric methodology, allowing rapid quantification of detergent insoluble forms of ataxin-3 fused to a green fluorescent protein. Flow cytometric analysis revealed an increased number of detergent-insoluble ataxin-3 particles in cells and zebrafish expressing polyQ expanded ataxin-3 when compared to cells and zebrafish expressing wildtype human ataxin-3. Interestingly, a protein aggregation phenotype could be detected as early as two days of age in transgenic zebrafish, prior to the onset of a detectable movement impairment at 6 days of age, suggesting protein aggregation may be an early disease phenotype in SCA3. Further, treatment of SCA3 cells and transgenic zebrafish with compounds known to modulate the activity of the autophagy protein quality control pathway altered the number of detergent-insoluble ataxin-3 particles detected by flow cytometry. We conclude that flow cytometry is a powerful tool that can be harnessed to rapidly quantify ataxin-3 aggregates, both in vitro and in vivo, and can be utilised to screen and compare potential protein aggregate targeting therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3