Islet vascularization is regulated by primary endothelial cilia via VEGF-A dependent signaling

Author:

Xiong Yan,Scerbo M. Julia,Seelig Anett,Volta Francesco,O’Brien Nils,Dicker Andrea,Padula Daniela,Lickert Heiko,Gerdes Jantje M.,Berggren Per-Olof

Abstract

RationaleAccumulating evidence point to a role for primary cilia in endothelial cell function. Islet vascularization is an important determinant of islet function and glucose homeostasis. We have previously shown that β-cell cilia directly regulate insulin secretion. However, it is unclear whether primary cilia are also implicated in islet vascularization and thus contribute to glucose homeostasis.ObjectiveTo characterize the role of primary cilia in islet vascularization.Methods and ResultsAt four weeks, Bbs4−/− islets show markedly lower intra-islet capillary density with enlarged diameters. We transplanted islets into the anterior chamber (ACE) of mouse eyes for longitudinal and non-invasive in vivo monitoring of vascular morphology. Bbs4−/− islets exhibited significantly delayed re-vascularization and enlarged vessels during engraftment. Similar vascular phenotypes were observed in two other ciliopathy models. By shifting the relative contributions of host versus donor endothelial cells in islet revascularization, we found that primary cilia on endothelial cells is essential for this process. Electron microscopy analysis further revealed a lack of fenestration in engrafted Bbs4−/− islets, partially impairing vascular permeability and glucose delivery to β-cells. Finally, we identified that Vascular endothelial cell growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR2) signalling is involved in islet vascularization, islet function and vascular fenestration. In vitro silencing of two different ciliary genes in endothelial cells disrupts VEGF-A/ VEGFR2 internalization and phospho-activation of downstream signalling components. Consequently, key features of angiogenesis including proliferation, migration and tube formation are attenuated in BBS4 silenced endothelial cells.ConclusionsEndothelial cell primary cilia regulate islet vascularization and vascular barrier function via VEGF-A/ VEGFR2 signaling pathway. Islet vascularization is impaired in four weeks old Bbs4−/− mice. Long-time monitoring of re-vascularization of WT and Bbs4−/− islets recapitulates the phenotype and demonstrates a role for cilia in islet vascularization and vascular barrier function. VEGF-A/ VEGFR2-dependent signalling is regulated by endothelial primary cilia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3