The genome of Auriculariopsis ampla sheds light on fruiting body development and wood-decay of bark-inhabiting fungi

Author:

Almási Éva,Sahu Neha,Krizsán Krisztina,Bálint Balázs,Kovács Gábor M.,Kiss Brigitta,Cseklye Judit,Drula Elodie,Henrissat Bernard,Nagy István,Chovatia Mansi,Adam Catherine,LaButti Kurt,Lipzen Anna,Riley Robert,Grigoriev Igor V.,Nagy László G.

Abstract

AbstractThe Agaricomycetes are fruiting body forming fungi that produce some of the most efficient enzyme systems to degrade woody plant materials. Despite decades-long interest in the ecological and functional diversity of wood-decay types and in fruiting body development, the evolution of the genetic repertoires of both traits are incompletely known. Here, we sequenced and analyzed the genome of Auriculariopsis ampla, a close relative of the model species Schizophyllum commune. Comparative analyses of wood-decay genes in these and other 29 Agaricomycetes species revealed that the gene family composition of A. ampla and S. commune are transitional between that of white rot species and less efficient wood-degraders (brown rot, ectomycorrhizal). Rich repertoires of suberinase and tannase genes were found in both species, with tannases generally restricted to species that preferentially colonize bark-covered wood. Analyses of fruiting body transcriptomes in both A. ampla and S. commune highlighted a high rate of divergence of developmental gene expression. Several genes with conserved developmental expression were found, nevertheless, including 9 new transcription factors as well as small secreted proteins, some of which may serve as fruiting body-specific effector molecules. Taken together, the genome sequence and developmental transcriptome of Auriculariopsis ampla has highlighted novel aspects of wood-decay diversity and of fruiting body development in mushroom-forming fungi.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3