Mutation of the ATPase domain of MutS homolog-5 (MSH5) reveals a requirement for a functional MutSγ complex for all crossovers in mammalian meiosis

Author:

Milano Carolyn R.,Holloway J. Kim,Zhang Yongwei,Jin Bo,Bergman Aviv,Edelmann Winfried,Cohen Paula E.

Abstract

ABSTRACTDuring meiosis, induction of DNA double strand breaks (DSB) leads to recombination between homologous chromosomes, resulting in crossovers (CO) and non-crossovers (NCO). Only 10% DSBs resolve as COs, mostly through a class I pathway dependent on MutSγ (MSH4/ MSH5). Class II CO events represent a minor proportion of the total CO count and also arise from DSBs, but are not thought to involve MutSγ. However, loading of MutSγ occurs very early in prophase I at a frequency that far exceeds the final number of class I COs found in late prophase I. Moreover, loss of MutSγ in mouse results in apoptosis before CO formation, preventing analysis of its CO function. We generated a mutation in the ATP binding domain of Msh5 (Msh5GA). While this mutation was not expected to affect MutSγ complex formation, MutSγ foci do not accumulate during prophase I. Nevertheless, while some spermatocytes from Msh5-/- animals progress into pachynema, most spermatocytes from Msh5GA/GA mice progress to late pachynema and beyond. Some spermatocytes from Msh5GA/GA mice complete prophase I entirely, allowing for the first time an assessment of MSH5 function in CO formation. At pachynema, Msh5GA/GA spermatocytes show persistent DSBs, incomplete homolog pairing, and fail to accumulate MutLγ (MLH1/MLH3). Unexpectedly, Msh5GA/GA diakinesis-staged spermatocytes have no chiasmata at all from any CO pathway, indicating that a functional MutSγ complex in early prophase I is a pre-requisite for all COs.ARTICLE SUMMARYMSH4/MSH5 are critical components of the class I crossover (CO) machinery, which is responsible for >90% of the COs that arise in mammalian meiosis. We generated a point mutation in the ATP binding motif of Msh5, and found that mutant spermatocytes lose all COs, not just those arising from the class I pathway.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3