Computational simulation of the reactive oxygen species and redox network in the regulation of chloroplast metabolism

Author:

Gerken Melanie,Kakorin Sergej,Chibani KamelORCID,Dietz Karl-JosefORCID

Abstract

AbstractCells contain a thiol redox regulatory network to coordinate metabolic and developmental activities with exogenous and endogenous cues. This network controls the redox state and activity of many target proteins. Electrons are fed into the network from metabolism and reach the target proteins via redox transmitters such as thioredoxin (TRX) and NADPH-dependent thioredoxin reductases (NTR). Electrons are drained from the network by reactive oxygen species (ROS) through thiol peroxidases, e.g., peroxiredoxins (PRX). Mathematical modeling promises access to quantitative understanding of the network function and was implemented for the photosynthesizing chloroplast by using published kinetic parameters combined with fitting to known biochemical data. Two networks were assembled, namely the ferredoxin (FDX), FDX-dependent TRX reductase (FTR), TRX, fructose-1,6-bisphosphatase pathway with 2-cysteine PRX/ROS as oxidant, and separately the FDX, FDX-dependent NADP reductase (FNR), NADPH, NTRC-pathway for 2-CysPRX reduction. Combining both modules allowed drawing several important conclusions of network performance. The resting H2O2 concentration was estimated to be about 30 nM in the chloroplast stroma. The electron flow to metabolism exceeds that into thiol regulation of FBPase more than 7000-fold under physiological conditions. The electron flow from NTRC to 2-CysPRX is about 5.46-times more efficient than that from TRX-f1 to 2-CysPRX. Under severe stress (30 μM H2O2) the ratio of electron flow to the thiol network relative to metabolism sinks to 1:251 whereas the ratio of electron flow from NTRC to 2-CysPRX and TRX-f1 to 2-CysPRX rises up to 1:80. Thus, the simulation provides clues on experimentally inaccessible parameters and describes the functional state of the chloroplast thiol regulatory network.Authors summaryThe state of the thiol redox regulatory network is a fundamental feature of all cells and determines metabolic and developmental processes. However, only some parameters are quantifiable in experiments. This paper establishes partial mathematical models which enable simulation of electron flows through the regulatory system. This in turn allows for estimating rates and states of components of the network and to tentatively address previously unknown parameters such as the resting hydrogen peroxide levels or the expenditure of reductive power for regulation relative to metabolism. The establishment of such models for simulating the performance and dynamics of the redox regulatory network is of significance not only for photosynthesis but also, e.g., in bacterial and animal cells exposed to environmental stress or pathological disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3