Author:
Thestrup Josephine,Tipold Marina,Kindred Alexandra,Stark Kara,Curry Travis,Lewellyn Lindsay
Abstract
AbstractIntercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and expansion of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold expansion that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and expansion. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and expansion throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once the ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain their stability. Our data suggest that the nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.
Publisher
Cold Spring Harbor Laboratory