Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei

Author:

Engstler Markus,Boshart Michael

Abstract

Transmission of a protozoan parasite from a vertebrate to invertebrate host is accompanied by cellular differentiation. The signals from the environment that trigger the process are poorly understood. The model parasite Trypanosoma brucei proliferates in the mammalian bloodstream and in the tsetse fly. On ingestion by the tsetse, the trypanosome undergoes a rapid differentiation that is marked by replacement of the variant surface glycoprotein (VSG) coat with GPI-anchored EP and GPEET procyclins. Here we show that a cold shock of ΔT > 15°C is sufficient to reversibly induce high-level expression of the insect stage-specific EP gene in the mammalian bloodstream stages of T. brucei. The 3′-UTR of the EP mRNA is necessary and sufficient for the increased expression. During cold shock, EP protein accumulates in the endosomal compartment in the proliferating, slender, bloodstream stage, whereas the EP is present on the plasma membrane in the quiescent, stumpy, bloodstream stage. Thus, there is a novel developmentally regulated cell surface access control mechanism for a GPI-anchored protein. In addition to inducing EP expression, cold shock results in the acquisition of sensitivity to micromolar concentrations of cis-aconitate and citrate by stumpy but not slender bloodstream forms. The cis-aconitate and citrate commit stumpy bloodstream cells to differentiation to the procyclic stage along with rapid initial proliferation. We propose a hierarchical model of three events that regulate differentiation after transmission to the tsetse: sensing the temperature change, surface access of a putative receptor, and sensing of a chemical cue.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3