The Impact of High-Performance Computing Best Practice Applied to Next-Generation Sequencing Workflows

Author:

Carrier Pierre,Long Bill,Walsh Richard,Dawson Jef,Sosa Carlos P.,Haas Brian,Tickle Timothy,William Thomas

Abstract

High Performance Computing (HPC) Best Practice offers opportunities to implement lessons learned in areas such as computational chemistry and physics in genomics workflows, specifically Next-Generation Sequencing (NGS) workflows. In this study we will briefly describe how distributed-memory parallelism can be an important enhancement to the performance and resource utilization of NGS workflows. We will illustrate this point by showing results on the parallelization of the Inchworm module of the Trinity RNA-Seq pipeline for de novo transcriptome assembly. We show that these types of applications can scale to thousands of cores. Time scaling as well as memory scaling will be discussed at length using two RNA-Seq datasets, targeting the Mus musculus (mouse) and the Axolotl (Mexican salamander). Details about the efficient MPI communication and the impact on performance will also be shown. We hope to demonstrate that this type of parallelization approach can be extended to most types of bioinformatics workflows, with substantial benefits. The efficient, distributed-memory parallel implementation eliminates memory bottlenecks and dramatically accelerates NGS analysis. We further include a summary of programming paradigms available to the bioinformatics community, such as C++/MPI.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data in metagenomics: Apache Spark vs MPI;PLOS ONE;2020-10-06

2. Scalable and efficient whole-exome data processing using workflows on the cloud;Future Generation Computer Systems;2016-12

3. Performance Optimization for the Trinity RNA-Seq Assembler;Tools for High Performance Computing 2015;2016

4. PAGANtec: OpenMP Parallel Error Correction for Next-Generation Sequencing Data;OpenMP: Heterogenous Execution and Data Movements;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3