Author:
Watanabe Yumi,Kameoka Sei,Gopalakrishnan Vidya,Aldape Kenneth D.,Pan Zhizhong Z.,Lang Frederick F.,Majumder Sadhan
Abstract
Repressor element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress several terminal neuronal differentiation genes by binding to a specific DNA sequence (RE1/neuron-restrictive silencer element [NRSE]) present in their regulatory regions. REST-VP16 binds to the same RE1/NRSE, but activates these REST/NRSF target genes. However, it is unclear whether REST-VP16 expression is sufficient to cause formation of functional neurons either from neural stem cells or from heterologous stem cells. Here we show that the expression of REST-VP16 in myoblasts grown under muscle differentiation conditions blocked entry into the muscle differentiation pathway, countered endogenous REST/NRSF-dependent repression, activated the REST/NRSF target genes, and, surprisingly, activated other neuronal differentiation genes and converted the myoblasts to a physiologically active neuronal phenotype. Furthermore, in vitro differentiated neurons produced by REST-VP16-expressing myoblasts, when injected into mouse brain, survived, incorporated into the normal brain, and did not form tumors. This is the first instance in which myoblasts were converted to a neuronal phenotype. Our results suggest that direct activation of REST/NRSF target genes with a single transgene, REST-VP16, is sufficient to activate other terminal neuronal differentiation genes and to override the muscle differentiation pathways, and they suggest that this approach provides an efficient way of triggering neuronal differentiation in myoblasts and possibly other stem cells.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献