Cross-species analysis of enhancer logic using deep learning

Author:

Minnoye LiesbethORCID,Taskiran Ibrahim IhsanORCID,Mauduit David,Fazio Maurizio,Van Aerschot Linde,Hulselmans Gert,Christiaens Valerie,Makhzami Samira,Seltenhammer Monika,Karras Panagiotis,Primot Aline,Cadieu Edouard,van Rooijen Ellen,Marine Jean-Christophe,Egidy Giorgia,Ghanem Ghanem-Elias,Zon Leonard,Wouters JasperORCID,Aerts SteinORCID

Abstract

Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type–specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4. Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.

Funder

European Research Council Consolidator

KU Leuven

Foundation Against Cancer

Fonds Wetenschappelijk Onderzoek

Kom op tegen Kanker

Stand up to Cancer

Flemish Cancer Society

Stichting tegen Kanker

Foundation against Cancer

Belgian Cancer Society

CRB-Anim PIA1

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

Reference119 articles.

1. Abadi M , Agarwal A , Barham P , Brevdo E , Chen Z , Citro C , Corrado GS , Davis A , Dean J , Devin M , 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv :1603.04467 [cs.DC].

2. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

3. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning

4. The origin and evolution of cell types

5. An alignment-free method to identify candidate orthologous enhancers in multiple Drosophila genomes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3