Foraging fruit flies mix navigational and learning-based decision-making strategies

Author:

Seidenbecher Sophie E.,Sanders Joshua I.,von Philipsborn Anne C.ORCID,Kvitsiani DudaORCID

Abstract

AbstractAnimals often navigate environments that are uncertain, volatile and complex, making it challenging to locate reliable food sources. Therefore, it is not surprising that many species evolved multiple, parallel and complementary foraging strategies to survive. Current research on animal behavior is largely driven by a reductionist approach and attempts to study one particular aspect of behavior in isolation. This is justified by the huge success of past and current research in understanding neural circuit mechanisms of behaviors. But focusing on only one aspect of behaviors obscures their inherent multidimensional nature. To fill this gap we aimed to identify and characterize distinct behavioral modules using a simple reward foraging assay. For this we developed a single-animal, trial-based probabilistic foraging task, where freely walking fruit flies experience optogenetic sugar-receptor neuron stimulation. By carefully analyzing the walking trajectories of flies, we were able to dissect the animals foraging decisions into multiple underlying systems. We show that flies perform local searches, cue-based navigation and learn task relevant contingencies. Using probabilistic reward delivery allowed us to bid several competing reinforcement learning (RL) models against each other. We discover that flies accumulate chosen option values, forget unchosen option values and seek novelty. We further show that distinct behavioral modules -learning and navigation-based systems-cooperate, suggesting that reinforcement learning in flies operates on dimensionality reduced representations. We therefore argue that animals will apply combinations of multiple behavioral strategies to generate foraging decisions.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Evo devo and cognitive science;Wiley Interdisciplinary Reviews: Cognitive Science,2011

2. The hierarchical organization of nervous mechanisms underlying instinctive behavior;Foundations of animal behavior: Classic papers with commentaries,1996

3. Explicit neural signals reflecting reward uncertainty

4. R. S. Sutton , and A. G. Barto , Reinforcement learning: an introduction, MIT Press, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3