Author:
Dijk David van,Nainys Juozas,Sharma Roshan,Kaithail Pooja,Carr Ambrose J.,Moon Kevin R.,Mazutis Linas,Wolf Guy,Krishnaswamy Smita,Pe'er Dana
Abstract
ABSTRACTSingle-cell RNA-sequencing is fast becoming a major technology that is revolutionizing biological discovery in fields such as development, immunology and cancer. The ability to simultaneously measure thousands of genes at single cell resolution allows, among other prospects, for the possibility of learning gene regulatory networks at large scales. However, scRNA-seq technologies suffer from many sources of significant technical noise, the most prominent of which is ‘dropout’ due to inefficient mRNA capture. This results in data that has a high degree of sparsity, with typically only ~10% non-zero values. To address this, we developed MAGIC (Markov Affinity-based Graph Imputation of Cells), a method for imputing missing values, and restoring the structure of the data. After MAGIC, we find that two- and three-dimensional gene interactions are restored and that MAGIC is able to impute complex and non-linear shapes of interactions. MAGIC also retains cluster structure, enhances cluster-specific gene interactions and restores trajectories, as demonstrated in mouse retinal bipolar cells, hematopoiesis, and our newly generated epithelial-to-mesenchymal transition dataset.
Publisher
Cold Spring Harbor Laboratory
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献