Fast and interpretable alternative splicing and differential gene-level expression analysis using transcriptome segmentation with Yanagi

Author:

Gunady Mohamed K,Mount Stephen MORCID,Bravo Héctor CorradaORCID

Abstract

AbstractIntroduction:Analysis of differential alternative splicing from RNA-seq data is complicated by the fact that many RNA-seq reads map to multiple transcripts, besides, the annotated transcripts are often a small subset of the possible transcripts of a gene. Here we describe Yanagi, a tool for segmenting transcriptome to create a library of maximal L-disjoint segments from a complete transcriptome annotation. That segment library preserves all transcriptome substrings of length L and transcripts structural relationships while eliminating unnecessary sequence duplications.Contributions:In this paper, we formalize the concept of transcriptome segmentation and propose an efficient algorithm for generating segment libraries based on a length parameter dependent on specific RNA-Seq library construction. The resulting segment sequences can be used with pseudo-alignment tools to quantify expression at the segment level. We characterize the segment libraries for the reference transcriptomes of Drosophila melanogaster and Homo sapiens and provide gene-level visualization of the segments for better interpretability. Then we demonstrate the use of segments-level quantification into gene expression and alternative splicing analysis. The notion of transcript segmentation as introduced here and implemented in Yanagi opens the door for the application of lightweight, ultra-fast pseudo-alignment algorithms in a wide variety of RNA-seq analyses.Conclusion:Using segment library rather than the standard transcriptome succeeds in significantly reducing ambigious alignments where reads are multimapped to several sequences in the reference. That allowed avoiding the quantification step required by standard kmer-based pipelines for gene expression analysis. Moreover, using segment counts as statistics for alternative splicing analysis enables achieving comparable performance to counting-based approaches (e.g. rMATS) while rather using fast and lighthweight pseudo alignment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3