Abstract
ABSTRACTFormalin fixation and paraffin-embedding (FFPE) is the most common method to preserve human tissue for clinical diagnosis and FFPE archives represent an invaluable resource for biomedical research. Proteins in FFPE material are stable over decades but their efficient extraction and streamlined analysis by mass spectrometry (MS)-based proteomics has so far proven challenging. Here, we describe an MS-based proteomic workflow for quantitative profiling of large FFPE tissue cohorts directly from pathology glass slides. We demonstrate broad applicability of the workflow to clinical pathology specimens and variable sample amounts, including less than 10,000 cancer cells isolated by laser-capture microdissection. Using state-of-the-art data dependent acquisition (DDA) and data independent (DIA) MS workflows, we consistently quantify a large part of the proteome in 100 min single-run analyses. In an adenoma cohort comprising more than 100 samples, total work up took less than a day. We observed a moderate trend towards lower protein identifications in long-term stored samples (>15 years) but clustering into distinct proteomic subtypes was independent of archival time. Our results underline the great promise of FFPE tissues for patient phenotyping using unbiased proteomics and prove the feasibility of analyzing large tissue cohorts in a robust, timely and streamlined manner.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献