Comparison of single-cell whole-genome amplification strategies

Author:

Estévez-Gómez Nuria,Prieto Tamara,Guillaumet-Adkins Amy,Heyn Holger,Prado-López Sonia,Posada DavidORCID

Abstract

Single-cell genomics is an alluring area that holds the potential to change the way we understand cell populations. Due to the small amount of DNA within a single cell, whole-genome amplification becomes a mandatory step in many single-cell applications. Unfortunately, single-cell whole-genome amplification (scWGA) strategies suffer from several technical biases that complicate the posterior interpretation of the data. Here we compared the performance of six different scWGA methods (GenomiPhi, REPLIg, TruePrime, Ampli1, MALBAC, and PicoPLEX) after amplifying and low-pass sequencing the complete genome of 230 healthy/tumoral human cells. Overall, REPLIg outperformed competing methods regarding DNA yield, amplicon size, amplification breadth, amplification uniformity –being the only method with a random amplification bias–, and false single-nucleotide variant calls. On the other hand, non-MDA methods, and in particular Ampli1, showed less allelic imbalance and ADO, more reliable copy-number profiles and less chimeric amplicons. While no single scWGA method showed optimal performance for every aspect, they clearly have distinct advantages. Our results provide a convenient guide for selecting a scWGA method depending on the question of interest while revealing relevant weaknesses that should be considered during the analysis and interpretation of single-cell sequencing data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3