Abstract
AbstractThe Mammalian phosphatase of regenerating liver (PRL) family is primarily recognized for its oncogenic properties. Here we found that in Drosophila, loss of prl-1 resulted in CO2-induced brain disorder presented as irreversible wing hold up with enhancement of Ca2+ responses at the neuron synaptic terminals. Overexpression of Prl-1 in the nervous system could rescue the mutant phenotype. We show that Prl-1 is particularly expressed in CO2-responsive neural circuit and the higher brain centers. Ablation of the CO2 olfactory receptor, Gr21a, suppressed the mutant phenotype, suggesting that CO2 acts as a neuropathological substrate in absence of Prl-1. Further studies found that the wing hold up is an obvious consequence upon knockdown of Uex, a magnesium transporter, which directly interacts with Prl-1. Conditional expression of Uex in the nervous system could rescue the phenotype of prl-1 mutants. We demonstrate that Uex acts genetically downstream of Prl-1. Our findings provide important insights into mechanisms of Prl-1 protection against olfactory CO2 stimulation induced brain disorder at the level of detailed neural circuits and functional molecular connections.
Publisher
Cold Spring Harbor Laboratory