Myc is dispensable for cardiac development in the mouse but rescues Mycn-deficient hearts through functional replacement and cell competition

Author:

Muñoz-Martín Noelia,Sierra Rocío,Schimmang Thomas,Campo Cristina Villa del,Torres Miguel

Abstract

AbstractMyc is considered an essential transcription factor for heart development, but cardiac defects have only been studied in global Myc loss of function models. Here, we eliminated Myc by recombining a Myc floxed allele with the Nkx2.5Cre driver. We observed no anatomical, cellular or functional alterations in either fetuses or adult cardiac Myc-deficient mice. We re-examined Myc expression during development and found no expression in developing cardiomyocytes. In contrast, we confirmed that Mycn is essential for cardiomyocyte proliferation and cardiogenesis. Mosaic Myc overexpression in a Mycn-deficient background, shows that Myc can replace Mycn function, recovering heart development. We further show that this recovery involves the elimination of Mycn-deficient cells by Cell Competition. Our results indicate that Myc is dispensable during cardiogenesis and adult heart homeostasis and Mycn is exclusively responsible for cardiomyocyte proliferation during heart development. Nonetheless, our results show that Myc can functionally replace Mycn. We also show that cardiomyocytes compete according to their overall Myc+Mycn levels and that Cell Competition eliminates flawed cardiomyocytes, suggesting its relevance as a quality control mechanism in cardiac development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3